
ESP – Environmental Surveying
Platform

Benjamin Goerdt, Devon Wilkerson, Sergio

Gonzalez, Kris Choudhury

Dept. of Electrical and Computer Engineering,

University of Central Florida, Orlando, Florida,

32816-2450

Abstract — This project is designed to implement a

platform for navigating a variety of potentially dangerous
environments to identify possible zones for habitation. The

goal of the platform is to work with an autonomous vehicle

system that utilizes the onboard sensors for data collection. A
user interface is used for data integration that has been

gathered by different sensors to display the data into visual

components. A NVIDIA Jetson Nano running the robot
operating system (ROS) integrates a Kinect sensor to detect

hazards in real time, while navigating to a GPS waypoint.

Index Terms — Autonomous systems, Data collection, Data

integration, Machine vision, Object recognition

I. INTRODUCTION

This project was created with the intent to develop a low-

cost data collection device to access remote areas where

humans might not be able to access or spend extended

periods of time. With rough terrain and limited

communication methods the vehicle must be able to

calculate a route and travel between waypoints while

observing the environment along the way.

Using a high accuracy GPS module, we can ensure that

in the event of a cellular service interruption, or radio

communication failure, that the vehicle will still be

autonomous and able to continue its calculated route with

the end goal of a safe return.

Beyond route calculation, the vehicle has onboard

sensors and cameras to enable object detection to alert of

obstacles along a path. We have achieved SAE Level 4

Autonomy in which the vehicle can take input from its

surroundings and make safety decisions. The ESP has the

option to reroute around the obstacle and resume its path. If

there is not enough physical clearance or a low margin of

safety for the maneuver, the vehicle will pull over to safety,

summon help, and wait for assistance to arrive.

With the distraction of driving removed, the data is

presented on a touchscreen dashboard in a friendly user

interface for an operator to view. Simultaneously it is also

transmitted to a web portal that can be accessed when

cellular service, or WIFI, is available. All sensor and

location data is recorded to a rolling window storage

configuration onboard.

II. DESIGN

Our vehicle consists of multiple subsystems that are

interlinked by I2C to communicate data quickly and

effectively. Speed, and data accuracy, are the main

concerns when developing and prototyping. A response

time of 100ms was needed for the collection, transmission,

calculation and display of all the data collected by the

vehicle’s sensors and camera.

A. Chassis

The chassis that this vehicle’s technology is built upon is

a power wheels ride on 12V toy. It was chosen due to its

weight capacity, mounting area for a solar panel, and

remote control. The dimensions are 39 x 26 x 20in and can

support a payload of 61lbs. The steering wheel has been

removed to allow for the mounting of the touchscreen

display, as well as the dashboard region housing various

computing devices. The under-seat compartment has been

cleaned up to allow components to be more spread out, thus

reducing the heat and need for active cooling methods.

To aid in the traversing of rough terrain, a track system

has been developed to eliminate the front steering. This

allowed us to achieve a tighter turning radius, lower our

center of gravity, and add rigidity to the frame.

The platform has many modifications that can be done to

ensure reliability and more power, but none of them were

required after thorough testing.

B. NVIDIA Jetson Nano

The NVIDIA Jetson Nano runs all autonomous

navigation and object detection via the Robot Operating

System (ROS). Its small form factor is a great choice for

this project due to the small size of the vehicle our team is

using. It supports SPI, I2C, and UART communication,

which provides a wide array of sensors that are available to

use if needed. The powerful CPU and GPU provide a lot of

processing speed for the large number of calculations and

data needed for ROS to navigate and detect objects

accurately and reliably.

C. Microcontroller

The ATMEGA328P is the microcontroller of choice for

our vehicle. This 23-pin device met our needs due to having

an adequate number of analog pins to run the distance

sensors, as well supporting I2C communications.

We did not need to order this microcontroller as a few of

us already had one on our Arduino devices. Arduino has an

extensive sensor library, which makes integrating all the

sensors together a much easier task.

D. Sensors and Circuit Board

The two-layer board was designed with heat dissipation

in mind, length matched I2C busses, and 2 oz/ft copper

deposition to achieve a compact form factor. Headers were

designed to be mounted on the perimeter of the board to

allow for long runs of wire for external sensors. The total

size is 100x100 mm. Our sensors were chosen by price to

performance ratio, where the best performing sensor within

our budget would be chosen.

Price and communication protocol were the two most

important factors that were taken into consideration when

selecting what sensors to use on our vehicle. The goal was

to get sensors that communicated using I2C for as cheap as

possible.

The distance sensors were the only ones that do no

communicate using I2C, instead they use analog

communications. These sensors are attached to each side of

the vehicle to help avoid potential obstacles.

There are different kinds of light sensors attached to the

vehicle; the VEML 7700 Light sensor and the VEML 6070

UV Light sensor. Both sensors have an I2C interface and

are used to monitor the amount of ambient light around the

vehicle as well as to determine how much UV light is

hitting the vehicle.

The PMSA003I Particulate Matter sensor, SGP40

Volatile Organic Compound Sensor, and the SEN0322

Oxygen sensor are all used to monitor the air quality

surrounding the vehicle. There were other options for these

sensors that were cheaper, but they were all analog, so we

chose to pay a little more to have I2C communication.

There is also the AM2320 Temperature and Humidity

Sensor. This one sensor will allow us to display the current

temperature as well the percent humidity in the surrounding

area. This device was the cheapest of all the sensors and

still allowed for I2C communication.

E. Data Displaying

For our data visualization, we are using a Raspberry Pi 4

and Raspberry Pi 7” Touch Screen. We decided to go with

that size of touchscreen as we wanted users to be able to

interact with the UI. It was also able to fit on a Power

Wheels vehicle. The reason we are using the Pi as a

computing device was due to its small form factor as well

as the ability for it to be able to host the UI application

directly, without the need of a separate server.

The UI application is powered by Node-RED which is a

flow-based programming tool for event-driven

applications4. The application would retrieve data from the

sensors to upload onto a dashboard for visualization. There

are two main sections for our dashboard: the environmental

gauges and the map. The environmental gauges are

receiving data from our various sensors through I2C

communication. Not every sensor we used had the ability

to communicate through I2C, specifically with the Grove

Air530 GPS sensor which would be used to mark the

current location of the vehicle. To solve this issue, we

connected the GPS sensor to an Arduino Uno which would

process coordinate data, then send that data through serial

communication, and finally send that data straight to the Pi.

For custom made waypoints, our UI sends coordinate

data to the Jetson Nano to process that information and let

the vehicle navigate to the coordinates as long as there is a

stable internet connection. Since internet connection will

not be available in almost any remote environment, our

team integrated a SixFab 4G/LTE Cellular Modem Kit5 into

the design. The modem connects directly onto the Pi and

allows it to connect to cellular networks for internet access.

III. USER INTERFACE

The major components involved in the user interface, that

were briefly highlighted in section II, will now be discussed

in more technical detail. For clarification, we are using an

Arduino Uno which has the same microcontroller that we

are using for our PCB, but solely for the purpose of sending

the GPS sensor data directly to the Raspberry Pi. The reason

for this is that it did not prove to be wise to create a new

revision of our PCB to accommodate one sensor especially

since it took generally a week to receive a new iteration of

the PCB. Not only that, with deadlines coming up we felt

that it be much easier to use an Arduino Uno to send that

data directly to the Pi.

 A. Raspberry Pi 4 Model B

The Raspberry Pi 4 Model B is the computing device that

is hosting our UI. The specific model we are using has 4

GB of RAM and 32 GB of Storage. It also comes with

various GPIO headers which we used to connect to our PCB

to receive all the sensor data via I2C communication. The

Pi comes preinstalled with an application called Node-

RED. As previously stated, Node-RED is a flow-based

programming tool that allows for wiring of data together

with flows through a browser. As it is a development tool it

has support for libraries to add different functionalities.

One such library which is the foundation for our UI is

node-red-dashboard. This library allows data to be “wired”

directly to visual components to display. As node-red is

always running that means data can be received and

updated in real time. Because of this functionality, we can

display data in real-time within 100 milliseconds.

B. Raspberry Pi 7” Touchscreen Display

The Raspberry Pi 7” Touchscreen Display is what is

displaying the UI. As discussed in section II, we chose this

display specifically for the size, resolution, and

connections. For the size we went with 7-inch display as we

found that other touchscreen displays were either too big or

too small for our purposes. We found that the 7-inch display

seemed to work the best for our situation as it was the best

size for our prototype.

Resolution also proved to be important as well. As it

stands, we found that a higher resolution proved to be more

intensive to the CPU. We tested this theory by manually

setting the default resolution to 1920x1080p, which proved

to be much more intensive than the lower resolutions.

Because of this, we had to limit our options for the

resolution of the display. The 7-inch touchscreen display

has a 800x480 resolution which proved to be sufficient in

displaying our UI and is not as resource intensive.

 In terms of connections, the 7-inch display has the least

amount since all it needed was a DSI cable, a 5-volt wire,

and a ground connection. Because of this, we had more pins

available to use, and decided to use the extra connections

for the I2C communication devices.

C. Node-RED Application

The Node-RED application is a program that comes with

all Raspberry Pi devices. This application allows for the

manipulation of data to be used for a variety of components.

Such components can be from a variety of third-party

libraries4. Our UI will be using a first-party and third-party

library. The libraries we are using are node-red-dashboard

and node-red-worldmap. Both libraries include dashboard

components related to the UI and is separated into two

different tabs: Sensor Info and World Map.

As previously mentioned, we have a GPS sensor

connected via UART and all the other sensors would be

connected via I2C. The GPS sensor is used for the

worldmap tab as it is used to mark the current location of

the vehicle. For all the other sensors, which will be

discussed in more detail in section IV, most of them are

used for the Sensor Info section. The only sensor that is

being used for both tabs is the NFC sensor from DFRobot.

The purpose of the NFC sensor is that it is being used to

secure the vehicle. The way we are securing it is by locking

the UI from user interaction. This works by hiding the

visual components for both tabs and presents a default

component that asks the user to scan the correct RFID card,

which will then “unlock” the UI and display the map and

sensor information.

In Figure 1, it demonstrates the flow of our UI to receive

the correct data. The Raspberry Pi picks up data from its

I2C bus as well as from its serial ports. Then in Node-RED,

it can access that data from those ports and then manipulate

it. For the I2C data, each sensor is connected to a

corresponding visual component. The NFC sensor, which

is part of the I2C package, is not connected to a visual

component but is connected to a function. By default, the

function sets that the lock screen to be displayed and hides

the sensor and map component. Once an NFC card is

scanned, the lock screen is hidden, and the visual

components are shown. As an added feature, there is an

option to lock the UI again if the user scans the card again.

The map tab utilizes the GPS sensor that’s being received

from the serial port. The data from the sensor is sent to a

world map node which receives coordinates to mark the

current location of the vehicle.

Since the application is browser-based, we have the Pi set

to kiosk mode and dedicated solely for the UI app.

D. Grove Air530 GPS Sensor

The Grove Air530 GPS sensor6 is what is being used to

always mark the current location of the vehicle. The sensor

runs off 5V with a baud rate between 9600 – 115200. The

sensor picks up GPS signals from up to 6 satellites at the

Figure 1: Node-RED UI Flowchart

same time and supports most GNSS positioning systems.

Map. In terms of accuracy, the sensor can get a 2.5 meter

horizontal and vertical accuracy.

The sensor is connected to an Arduino Uno which

accesses the Tx and Rx pins of the GPS. Once the

connection is made, a library called TinyGPS++ which is a

library that parses NMEA data streams7. Without this

library, the data that the sensor receives is cannot be used

directly. Once the library parses the data, the latitude and

longitude and printed to a serial monitor. From here, once

the Arduino Uno is connected to the Pi through a serial port,

Node-RED accesses that data stream and constantly

receives the latitude and longitude of the sensor at its

current location and marks it as a waypoint on the map.

E. SixFab 4G/LTE Cellular Modem Kit

The SixFab modem kit5 extends the networking capabilities

of the Raspberry Pi. Normally if we were just using the Pi

by itself, we would need to be connected to a Wi-Fi network

to use the internet. Since the map portion of the UI requires

an internet connection to display it in the first place. This

means that if we tested in environments which do not have

an established Wi-Fi network then the part of the UI would

not work.

As the UI is essential to the design, we felt that it was

necessary to include this component in the vehicle even if

the Pi was connected an established Wi-Fi network. The

reason for this is so the UI has something to fall back on for

two reasons. The first being if the vehicle happened to

navigate outside the range of the network, it would

something to fall back on to avoid any issues with marking

the current location of the vehicle as well as making new

waypoints. The second would be if the network that the

vehicle’s connected to would go down during operations

then the map feature would fail entirely. With the kit, we

can avoid all these issues as well as open up further options

for this networking.

IV. SENSORS

 The purpose of the vehicle is to be able to be deployed
in different kinds of environments and gather information
of the surrounding area. To do this, it will need to be
equipped with different kinds of sensors. There will be a
total of 12 different sensors on the vehicle.

A. HC-SR04 Distance Sensor

Four of these sensors are the HC-SR04 ultrasonic

distance sensors will all run on 5V. Each sensor emits a

high frequency sound wave while sending a signal HIGH

to the microcontroller. The sensor will signal LOW when it

detects the reflected sound wave. The microcontroller will

determine distance using the formula.

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
𝑡𝑖𝑚𝑒 ∗ 0.034

2

Figure 2: UI Design

The constant 0.034 is the speed of sound, in units of
cm/µs.

B. PMSA003I Particulate Matter Sensor

There is also a Particulate Matter sensor (PMSA003I)

that takes in samples of air in a small chamber and his hit

with a beam of light that gets scattered and read by a

photodiode. The Particulate Matter sensor used on our

vehicle will tell the microcontroller how many particles of

varying sizes are in the air sample. The PMSA003I is

capable of distinguishing are 3, 5, 10, 25, 50, and 100

micrometers (um). This sensor needs 5V to operate.

C. VEML 7700 Light Sensor

The VEML 7700 is the Light Sensor that is equipped on

the vehicle. The sensor can take a maximum supply

voltage of 4V but thanks to the 3.3V voltage regulator on

the breakout board, it allows us to plug it in to our 5V

power supply without concern of burning out.

The angle at which light his hits the sensor affects the

output value8. This sensor can measure up to 120 kLux.

D. VEML 6070 UV Light Sensor

 Our vehicle is also equipped with a VEML 6070 UV

Light sensor. This device takes in 5V and communicates

via I2C. Contrary to other low-cost UV light sensors on the

market, the VEML 7700 can detect light in the UV

spectrum. It doesn’t output a UV index value, instead it

outputs a value depending on how intense the UV light is.

The maximum value that can be outputted is 65535.

E. AM2320 Temperature and Humidity Sensor

 The AM2320 will monitor the temperature as well as the

relative humidity around the vehicle. Takes in 5V to

operate and also uses I 2C for communication. It has a

range of -40 °C up to +80 °C for the temperature sensing

and has range of 0% RH to 99% RH.

F. SEN0322 Oxygen Sensor

 The O2 sensor equipped on the vehicle is the SEN0322.

It takes in 5V and communicates with I2C. The amount of

oxygen in the air we breath is around 21%, 78% belongs

to nitrogen with the remaining percent going to argon and

other gases. The SEN0322 can measure the amount of

oxygen in the air up to 30%. This allows us to ensure that

the environment is safe enough to breath. Unsafe oxygen

percentage is below 19%.

G. SGP40 VOC Sensor

 The Volatile Organic Compound Sensor equipped on our

vehicle is the SGP40. This sensor takes in a maximum of

3.6V but has a voltage regulator on the breakout board that

allows for a 5V supply voltage to the device. This device

allows us to determine the VOC index of the area. VOC

index’s range from 0 to 500, with 100 being the average

index indoors.

H. DFR0231-H NFC Sensor

 Our vehicle will have the DFR0231-H NFC sensor to

simulate unlocking and locking. This sensor requires 5V to

operate and has both I2C as well UART. The

communication protocol can be interchanged with a flip of

the switch. It supports the Reader/Writer protocol, the Card

Emulator protocol, as well as the Peer-to-Peer protocol.

I. Microcontroller Programming

 To program the ATMEGA328P, we used the Arduino

IDE. In the program is a custom data structure that will hold

all of the information so that it can be sent via I2C to the

Raspberry Pi. The data structure is a total of 31 bytes so the

ATMEGA328P will not have to send multiple packages

since the Node Red flow that will be running on the

Raspberry Pi has a maximum data package of 32 bytes.

 The NFC sensor will determine if the touchscreen UI will

be locked or not. As the user taps the NFC with a supported

NFC tag, it will invert a Boolean value.

 When the Raspberry Pi sends a request for data, the

microcontroller will jump to Interrupt Service Routine that

sends each byte from the custom data object to the Pi.

V. NAVIGATION

The autonomous navigation is controlled by a NVIDIA

Jetson Nano running the robot operating system (ROS). To

successfully navigate, The Jetson Nano is using multiple

packages in ROS, which includes the navigation package1

for localization and navigation, the robot_localization2

package for sensor fusing and localization, the

freenect_stack3 package for depth information from the

Figure 3: Radiant Sensitivity vs. Angular Displacement

Microsoft Kinect, the nmea_navsat_driver package for

GPS data, the adafruit_imu package for gyroscopic and

linear acceleration data, an encoder package for velocity

data and localization, and a motor controller package for

navigation. The Jetson Nano communicates with a

gyroscopic sensor, and an accelerometer over I2C, a GPS

over UART, and an Arduino Mega and Microsoft Kinect

over USB.

A. Motors

The motors used on the vehicle are RS390 motors. These

motors are powered by a 12V battery and are controlled by

the Arduino Mega. The Arduino Mega is used as a motor

controller since the Jetson Nano is unable to have a digital

low signal sent to the pins, which causes floating voltage

levels throughout the enabled pins. This in turn produces

unpredictable behavior in the motors causing them to

randomly turn on when the pins receive voltage even when

the pin should be in a low state. The motors also have two

BTS7960 motor drivers controlling the voltage applied to

the motors for control. These motor drivers are placed

between the battery and motors since the Arduino Mega is

incapable of providing the necessary voltage to power the

motors, and the Arduino Mega controls the voltage going

through the motor drivers via digital pins.

B. Odometry

The odometry is calculated via encoder ticks from a

Quadrature encoder attached to the shaft of the motors.

These encoders calculate the velocity of the vehicle by

using the following formula:

 𝑉 =
2∗𝜋∗𝑟∗∆𝑡𝑖𝑐𝑘

∆𝑡
 (X)

where r is the radius of the wheel, ∆tick is the difference

in encoder ticks from the current and previous counts, and

∆t is the difference in time measured in milliseconds. This

approach is not accurate over a long distance due to wheel

slippage and false tick counts; however, it is aided by the

accelerometer sensor and the GPS, which are both fused

with this approach for velocity measurements. Since the

engineering requirements specify a position error by a

maximum of two meters, the use of estimated velocity will

not cause any issue when fused with the GPS, which has a

maximum position error of two meters.

C. Object Detection

The vehicle uses a Microsoft Kinect for depth data using

an infrared camera that uses a point cloud to estimate

distance. The resolution of the IR camera is 640 × 480

pixels and can support a resolution of 1280 × 1024 at a

lower frame rate. The IR camera also has a practical range

of 1.2 – 3.5 meters and has a maximum range of 6 meters.

The field of view of the IR camera is 57° horizontally and

43° vertically. Due to the large size of the depth data, which

would often be over 10MB in size, the depth information is

only updated at a rate of 3 Hz to avoid overtaxing the Jetson

Nano’s processor. During testing this would lead to a total

system failure, due to the Jetson Nano being unable to

process over 300MB of data per second from the Kinect

alone. The depth information is processed by the navigation

package to populate an occupancy grid via the costmap_2d

package within the navigation package. This package will

keep track of any potential obstacles of any size and will

allow the vehicle to properly plan its route accordingly. The

vehicle does not have any kind of mapping since it’s

designed for outdoor use in an unfamiliar environment, so

having an accurate occupancy grid is a key part of the

vehicle successfully navigating.

D. Navigation

The vehicle navigates with the navigation package. This

package provides the necessary behaviors for successfully

navigating with or without a map and relies on the user to

provide information about the robot. The first thing it

requires is a consistently updated sensor transformation

message. This allows for calculating the position of sensors

in relation to the base link, or the center of the robot. The

next thing it requires is an odometry source. This is

provided by the encoders on the wheels as discussed in

subsection B. A type of vision is also required for

successful navigation. This is provided by the Microsoft

Kinect as discussed in subsection C. The final requirement

is a base controller that the navigation stack can send

movement commands to in the form of X, Y, and Yaw

commands and receives velocity information VX, VY, and

VYaw. Since our vehicle is using a differential drive, it only

takes X, and Yaw commands and sends VX and VYaw

information. A map is an optional part of the navigation

package that we are not providing since the vehicle is

designed to navigate through unfamiliar areas. The

behaviors the navigation package provides are a global

planner, a local planner, a global costmap, a local costmap,

a common costmap and recovery behaviors. The costmaps

are how the navigation package stores information about

potential obstacles and required information about the robot

such as: dimensions, observation sources (LiDAR or

Kinect), observation range, global frame (non-moving

sources such as odometry origin and maps), base link,

update frequency, and whether a map is used. The global

and local planner behaviors require information about the

maximum velocity and acceleration limits of the robot, as

well as if the robot is holonomic or differential.

VI. ELECTRICAL

The electrical system of the vehicle is separated into two

power sources with a common ground between. This

configuration was chosen to prevent a sharp voltage drop

when the motors are activated, as well as allowing the hot-

swap functionality of the main chassis battery without

requiring a reboot of the microcontroller and data collection

devices.

An additional power source to aid in extending the

runtime was a solar panel attached to the hood. Rated at

100W, the panel had an actual output of 15W, so

compensation was needed after initial testing. The panel has

an integrated charge controller that connects to the chassis

battery. At 1.25A of output current, this will provide

enough power trickle charge the chassis battery, or supply

power to offset a majority of load with no passenger weight

in the vehicle.

A thermal cutoff fuse is mounted in-line with each motor

to shield the vehicle and passengers from overload if the

wheel gets stuck and the controller fails to cut power. The

average current draw from the battery is under 4A but will

peak over 10A when an excess load of 3x rated capacity is

tested. Even with the large load being tested, there was no

thermal fuse triggering nor wires generating concerning

amounts of heat.

A 12V-4.5Ah Sealed-Lead-Acid (SLA) battery was

selected and total runtime was not an issue even after

receiving a partially defective panel. Even with the solar

panel, charging can still be done using the built-in power

wheels battery controller at 0.5A, or an external 12V

charger up to 10A. This aligns with our initial specification

as golf carts are charged via the method of an external

charger.

The sensors and circuit board are powered by a 12V

Lithium-Ion battery comprised of 3-18650 cells. A 2Ah

Milwaukee M12 battery was the easiest source of power

during testing and demonstration. Located on the exterior

edge of the board are two screw connector terminals that

are used mutually exclusive for powering the board. A 5V

terminal is connected to the main trace of the circuit board

as a backup option if the on-board converter fails at any

point.

To connect directly from a 12V source, a 5V step down

regulator (Pololu D24V50F5) allows us to power the

sensors with a maximum sustained current of 5A. The

module features reverse polarity protection to sanitize the

cruder screw terminal inputs. This was beneficial over a

barrel jack during testing and allows the 5V input to be dual

purposed as an output port if needed. To further increase

the safety of powering our devices, a waterproof inline fuse

was added to the input of the board.

Powering a Kinect and transmitting data is done via a

proprietary cable from Microsoft that is connected to a

110V AC power source. To combat the issue of ruining an

expensive cable, allow modularity during prototyping, and

providing adequate wattage, an Uninterruptable-Power-

Supply (UPS) was chosen to be mounted on the vehicle. It

will be charged via an extension cord while the vehicle is

stopped. It has a reserve capacity of 200W, which is enough

for 6 hours of runtime. Rather than be configured in the

method it is meant for, the device will be used as a portable

110V source. The Kinect, our machine vision components,

Raspberry Pi, and screen will be powered by this source.

Rather than design our own solution, we found the safest

and most compact option to be purchasing a device with a

full sin wave inverter.

VII. CONCLUSION

This project has given our team experiences and insight

to multiple different areas of engineering due to the

complexity of making an autonomous vehicle. We have

adapted to failures and learned from mistakes. Choosing

this project was a difficult decision and a big leap out of

what we were comfortable with. We chose to create a

project that had aspects of the fields all our team members

wanted to get a career in: Electrical Systems, Software

Development, Robotics, and Embedded Systems. Given the

time frame of the project we wanted to push the boundaries

of what we thought we could do, while also trying to

succeed in making a functioning project.

Figure 4: PCB Layout

ACKNOWLEDGEMENT

This project had a lot of troubleshooting involved.

Thankfully there were many people and forums that were

eager to help us succeed. We would like to thank all of the

users from the NVIDIA Developer Forums for assisting

with Jetson Nano problems, all the users from ROS

Answers for helping with navigation issues, OpenKinect

and ros-drivers contributors for Kinect troubleshooting. We

would also like to thank the users on the Node-RED forums

as well. The user David Burrows, known on the forums as

meeki007, solved most of the issues we were having with

our UI, as well as gave some suggestions on what could be

improved. We would also like to thank the professors, who

have kindly agreed to be a part of our review committee, as

well as the professors we

REFERENCES

[1]“Wiki,” ros.org. [Online]. Available:
http://wiki.ros.org/navigation. [Accessed: 28-Nov-2021]..

[2]“Robot_localization wiki¶,” robot_localization wiki -
robot_localization 2.6.11 documentation. [Online].

Available:
http://docs.ros.org/en/melodic/api/robot_localization/html/i
ndex.html. [Accessed: 28-Nov-2021].

[3]Ros-Drivers, “Ros-drivers/freenect_stack: Libfreenect based
Ros Driver,” GitHub. [Online]. Available:
https://github.com/ros-drivers/freenect_stack. [Accessed:
28-Nov-2021].

[4]“Documentation,” Node. [Online]. Available:
https://nodered.org/docs/. [Accessed: 28-Nov-2021].

[5]Sixfab Docs. [Online]. Available: https://docs.sixfab.com/.
[Accessed: 28-Nov-2021].

[6]B. Zuo, “Grove - GPS (AIR530),” seeedstudio. [Online].
Available: https://wiki.seeedstudio.com/Grove-GPS-

Air530/. [Accessed: 28-Nov-2021].
[7]“TinyGPS++ : arduiniana,” TinyGPS++ | Arduiniana.

[Online]. Available:
http://arduiniana.org/libraries/tinygpsplus/. [Accessed: 28-
Nov-2021].

[8] High Accuracy Ambient Light Sensor with I2C Interface.

[ebook] Vishay, p.3. Available:

https://media.digikey.com/pdf/Data%20Sheets/Vishay%20Semic

onductors/VEML7700.pdf . [Accessed 7 November 2021].

BIOGRAPHY

Kris Choudhury, a senior student of

the Department of Electrical and

Computer Engineering at the

University of Central Florida will be

receiving his Bachelor of Science in

December 2021. After graduating, he

will enter a career as an IT Software

Developer at World Fuel Services.

Benjamin Goerdt, a senior student of

the Department of Electrical and

Computer Engineering at the

University of Central Florida and will

receive his Bachelor of Electrical

Engineering in December of 2021.

Ben’s career aspirations are to work in

the automotive industry furthering the

research and development of electric

vehicles. Rapid prototyping keeps him

engaged with his work.

Devon Wilkerson, a senior student of

the Department of Electrical and

Computer Engineering at the

University of Central Florida. He plans

to continue his education and work

towards a MS in Computer

Engineering. His career goals are to

create robotic prosthetics after

graduating.

Sergio Gonzalez, a senior at the

University of Central Florida and will

receive his Bachelor of Science in

December of 2021. He will begin his

career as a Software Engineer at

Laserstar Technologies.

