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Abstract  —  This project is designed to implement a 

platform for navigating a variety of potentially dangerous 
environments to identify possible zones for habitation. The 

goal of the platform is to work with an autonomous vehicle 

system that utilizes the onboard sensors for data collection. A 
user interface is used for data integration that has been 

gathered by different sensors to display the data into visual 

components. A NVIDIA Jetson Nano running the robot 
operating system (ROS) integrates a Kinect sensor to detect 

hazards in real time, while navigating to a GPS waypoint.  

Index Terms  —  Autonomous systems, Data collection, Data 

integration, Machine vision, Object recognition 

I. INTRODUCTION 

This project was created with the intent to develop a low-

cost data collection device to access remote areas where 

humans might not be able to access or spend extended 

periods of time. With rough terrain and limited 

communication methods the vehicle must be able to 

calculate a route and travel between waypoints while 

observing the environment along the way.  

Using a high accuracy GPS module, we can ensure that 

in the event of a cellular service interruption, or radio 

communication failure, that the vehicle will still be 

autonomous and able to continue its calculated route with 

the end goal of a safe return.  

Beyond route calculation, the vehicle has onboard 

sensors and cameras to enable object detection to alert of 

obstacles along a path. We have achieved SAE Level 4 

Autonomy in which the vehicle can take input from its 

surroundings and make safety decisions. The ESP has the 

option to reroute around the obstacle and resume its path. If 

there is not enough physical clearance or a low margin of 

safety for the maneuver, the vehicle will pull over to safety, 

summon help, and wait for assistance to arrive. 

With the distraction of driving removed, the data is 

presented on a touchscreen dashboard in a friendly user 

interface for an operator to view. Simultaneously it is also 

transmitted to a web portal that can be accessed when 

cellular service, or WIFI, is available. All sensor and 

location data is recorded to a rolling window storage 

configuration onboard.  

II. DESIGN 

Our vehicle consists of multiple subsystems that are 

interlinked by I2C to communicate data quickly and 

effectively. Speed, and data accuracy, are the main 

concerns when developing and prototyping. A response 

time of 100ms was needed for the collection, transmission, 

calculation and display of all the data collected by the 

vehicle’s sensors and camera.  

A. Chassis 

The chassis that this vehicle’s technology is built upon is 

a power wheels ride on 12V toy. It was chosen due to its 

weight capacity, mounting area for a solar panel, and 

remote control. The dimensions are 39 x 26 x 20in and can 

support a payload of 61lbs. The steering wheel has been 

removed to allow for the mounting of the touchscreen 

display, as well as the dashboard region housing various 

computing devices. The under-seat compartment has been 

cleaned up to allow components to be more spread out, thus 

reducing the heat and need for active cooling methods.  

To aid in the traversing of rough terrain, a track system 

has been developed to eliminate the front steering. This 

allowed us to achieve a tighter turning radius, lower our 

center of gravity, and add rigidity to the frame. 

The platform has many modifications that can be done to 

ensure reliability and more power, but none of them were 

required after thorough testing. 

B. NVIDIA Jetson Nano 

The NVIDIA Jetson Nano runs all autonomous 

navigation and object detection via the Robot Operating 

System (ROS). Its small form factor is a great choice for 

this project due to the small size of the vehicle our team is 

using. It supports SPI, I2C, and UART communication, 

which provides a wide array of sensors that are available to 

use if needed. The powerful CPU and GPU provide a lot of 

processing speed for the large number of calculations and 

data needed for ROS to navigate and detect objects 

accurately and reliably. 

C. Microcontroller 

The ATMEGA328P is the microcontroller of choice for 

our vehicle. This 23-pin device met our needs due to having 

an adequate number of analog pins to run the distance 

sensors, as well supporting I2C communications. 

We did not need to order this microcontroller as a few of 

us already had one on our Arduino devices. Arduino has an 



extensive sensor library, which makes integrating all the 

sensors together a much easier task. 

D. Sensors and Circuit Board 

The two-layer board was designed with heat dissipation 

in mind, length matched I2C busses, and 2 oz/ft copper 

deposition to achieve a compact form factor. Headers were 

designed to be mounted on the perimeter of the board to 

allow for long runs of wire for external sensors. The total 

size is 100x100 mm. Our sensors were chosen by price to 

performance ratio, where the best performing sensor within 

our budget would be chosen.  

Price and communication protocol were the two most 

important factors that were taken into consideration when 

selecting what sensors to use on our vehicle. The goal was 

to get sensors that communicated using I2C for as cheap as 

possible. 

The distance sensors were the only ones that do no 

communicate using I2C, instead they use analog 

communications. These sensors are attached to each side of 

the vehicle to help avoid potential obstacles. 

There are different kinds of light sensors attached to the 

vehicle; the VEML 7700 Light sensor and the VEML 6070 

UV Light sensor. Both sensors have an I2C interface and 

are used to monitor the amount of ambient light around the 

vehicle as well as to determine how much UV light is 

hitting the vehicle.  

The PMSA003I Particulate Matter sensor, SGP40 

Volatile Organic Compound Sensor, and the SEN0322 

Oxygen sensor are all used to monitor the air quality 

surrounding the vehicle. There were other options for these 

sensors that were cheaper, but they were all analog, so we 

chose to pay a little more to have I2C communication. 

There is also the AM2320 Temperature and Humidity 

Sensor. This one sensor will allow us to display the current 

temperature as well the percent humidity in the surrounding 

area. This device was the cheapest of all the sensors and 

still allowed for I2C communication. 

E. Data Displaying 

For our data visualization, we are using a Raspberry Pi 4 

and Raspberry Pi 7” Touch Screen. We decided to go with 

that size of touchscreen as we wanted users to be able to 

interact with the UI. It was also able to fit on a Power 

Wheels vehicle. The reason we are using the Pi as a 

computing device was due to its small form factor as well 

as the ability for it to be able to host the UI application 

directly, without the need of a separate server.  

The UI application is powered by Node-RED which is a 

flow-based programming tool for event-driven 

applications4. The application would retrieve data from the 

sensors to upload onto a dashboard for visualization. There 

are two main sections for our dashboard: the environmental 

gauges and the map. The environmental gauges are 

receiving data from our various sensors through I2C 

communication. Not every sensor we used had the ability 

to communicate through I2C, specifically with the Grove 

Air530 GPS sensor which would be used to mark the 

current location of the vehicle. To solve this issue, we 

connected the GPS sensor to an Arduino Uno which would 

process coordinate data, then send that data through serial 

communication, and finally send that data straight to the Pi.  

For custom made waypoints, our UI sends coordinate 

data to the Jetson Nano to process that information and let 

the vehicle navigate to the coordinates as long as there is a 

stable internet connection. Since internet connection will 

not be available in almost any remote environment, our 

team integrated a SixFab 4G/LTE Cellular Modem Kit5 into 

the design. The modem connects directly onto the Pi and 

allows it to connect to cellular networks for internet access.  

III. USER INTERFACE 

The major components involved in the user interface, that 

were briefly highlighted in section II, will now be discussed 

in more technical detail. For clarification, we are using an 

Arduino Uno which has the same microcontroller that we 

are using for our PCB, but solely for the purpose of sending 

the GPS sensor data directly to the Raspberry Pi. The reason 

for this is that it did not prove to be wise to create a new 

revision of our PCB to accommodate one sensor especially 

since it took generally a week to receive a new iteration of 

the PCB. Not only that, with deadlines coming up we felt 

that it be much easier to use an Arduino Uno to send that 

data directly to the Pi.  

 A. Raspberry Pi 4 Model B 

The Raspberry Pi 4 Model B is the computing device that 

is hosting our UI. The specific model we are using has 4 

GB of RAM and 32 GB of Storage. It also comes with 

various GPIO headers which we used to connect to our PCB 

to receive all the sensor data via I2C communication. The 

Pi comes preinstalled with an application called Node-

RED. As previously stated, Node-RED is a flow-based 

programming tool that allows for wiring of data together 

with flows through a browser. As it is a development tool it 

has support for libraries to add different functionalities.  

One such library which is the foundation for our UI is 

node-red-dashboard. This library allows data to be “wired” 

directly to visual components to display. As node-red is 

always running that means data can be received and 

updated in real time. Because of this functionality, we can 

display data in real-time within 100 milliseconds. 

B. Raspberry Pi 7” Touchscreen Display 



The Raspberry Pi 7” Touchscreen Display is what is 

displaying the UI. As discussed in section II, we chose this 

display specifically for the size, resolution, and 

connections. For the size we went with 7-inch display as we 

found that other touchscreen displays were either too big or 

too small for our purposes. We found that the 7-inch display 

seemed to work the best for our situation as it was the best 

size for our prototype.  

Resolution also proved to be important as well. As it 

stands, we found that a higher resolution proved to be more 

intensive to the CPU. We tested this theory by manually 

setting the default resolution to 1920x1080p, which proved 

to be much more intensive than the lower resolutions. 

Because of this, we had to limit our options for the 

resolution of the display. The 7-inch touchscreen display 

has a 800x480 resolution which proved to be sufficient in 

displaying our UI and is not as resource intensive. 

   In terms of connections, the 7-inch display has the least 

amount since all it needed was a DSI cable, a 5-volt wire, 

and a ground connection. Because of this, we had more pins 

available to use, and decided to use the extra connections 

for the I2C communication devices. 

C. Node-RED Application 

The Node-RED application is a program that comes with 

all Raspberry Pi devices. This application allows for the 

manipulation of data to be used for a variety of components. 

Such components can be from a variety of third-party 

libraries4. Our UI will be using a first-party and third-party 

library. The libraries we are using are node-red-dashboard 

and node-red-worldmap. Both libraries include dashboard 

components related to the UI and is separated into two 

different tabs: Sensor Info and World Map.  

As previously mentioned, we have a GPS sensor 

connected via UART and all the other sensors would be 

connected via I2C. The GPS sensor is used for the 

worldmap tab as it is used to mark the current location of 

the vehicle. For all the other sensors, which will be 

discussed in more detail in section IV, most of them are 

used for the Sensor Info section. The only sensor that is 

being used for both tabs is the NFC sensor from DFRobot. 

The purpose of the NFC sensor is that it is being used to 

secure the vehicle. The way we are securing it is by locking 

the UI from user interaction. This works by hiding the 

visual components for both tabs and presents a default 

component that asks the user to scan the correct RFID card, 

which will then “unlock” the UI and display the map and 

sensor information. 

In Figure 1, it demonstrates the flow of our UI to receive 

the correct data. The Raspberry Pi picks up data from its 

I2C bus as well as from its serial ports. Then in Node-RED, 

it can access that data from those ports and then manipulate 

it. For the I2C data, each sensor is connected to a 

corresponding visual component. The NFC sensor, which 

is part of the I2C package, is not connected to a visual 

component but is connected to a function. By default, the 

function sets that the lock screen to be displayed and hides 

the sensor and map component. Once an NFC card is 

scanned, the lock screen is hidden, and the visual 

components are shown. As an added feature, there is an 

option to lock the UI again if the user scans the card again. 

The map tab utilizes the GPS sensor that’s being received 

from the serial port. The data from the sensor is sent to a 

world map node which receives coordinates to mark the 

current location of the vehicle. 

Since the application is browser-based, we have the Pi set 

to kiosk mode and dedicated solely for the UI app. 

D. Grove Air530 GPS Sensor 

The Grove Air530 GPS sensor6 is what is being used to 

always mark the current location of the vehicle. The sensor 

runs off 5V with a baud rate between 9600 – 115200. The 

sensor picks up GPS signals from up to 6 satellites at the 

Figure 1: Node-RED UI Flowchart 



same time and supports most GNSS positioning systems. 

Map. In terms of accuracy, the sensor can get a 2.5 meter 

horizontal and vertical accuracy.  

The sensor is connected to an Arduino Uno which 

accesses the Tx and Rx pins of the GPS. Once the 

connection is made, a library called TinyGPS++ which is a 

library that parses NMEA data streams7. Without this 

library, the data that the sensor receives is cannot be used 

directly. Once the library parses the data, the latitude and 

longitude and printed to a serial monitor. From here, once 

the Arduino Uno is connected to the Pi through a serial port, 

Node-RED accesses that data stream and constantly 

receives the latitude and longitude of the sensor at its 

current location and marks it as a waypoint on the map. 

 

E. SixFab 4G/LTE Cellular Modem Kit 

The SixFab modem kit5 extends the networking capabilities 

of the Raspberry Pi. Normally if we were just using the Pi 

by itself, we would need to be connected to a Wi-Fi network 

to use the internet. Since the map portion of the UI requires 

an internet connection to display it in the first place. This 

means that if we tested in environments which do not have 

an established Wi-Fi network then the part of the UI would 

not work.  

As the UI is essential to the design, we felt that it was 

necessary to include this component in the vehicle even if 

the Pi was connected an established Wi-Fi network. The 

reason for this is so the UI has something to fall back on for 

two reasons. The first being if the vehicle happened to 

navigate outside the range of the network, it would 

something to fall back on to avoid any issues with marking 

the current location of the vehicle as well as making new 

waypoints. The second would be if the network that the 

vehicle’s connected to would go down during operations 

then the map feature would fail entirely. With the kit, we 

can avoid all these issues as well as open up further options 

for this networking. 

IV. SENSORS 

   The purpose of the vehicle is to be able to be deployed 
in different kinds of environments and gather information 
of the surrounding area. To do this, it will need to be 
equipped with different kinds of sensors. There will be a 
total of 12 different sensors on the vehicle. 

A. HC-SR04 Distance Sensor 

Four of these sensors are the HC-SR04 ultrasonic 

distance sensors will all run on 5V. Each sensor emits a 

high frequency sound wave while sending a signal HIGH 

to the microcontroller. The sensor will signal LOW when it 

detects the reflected sound wave. The microcontroller will 

determine distance using the formula. 

 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
𝑡𝑖𝑚𝑒 ∗ 0.034

2
 

  

Figure 2: UI Design  



The constant 0.034 is the speed of sound, in units of 
cm/µs. 

B. PMSA003I Particulate Matter Sensor 

There is also a Particulate Matter sensor (PMSA003I) 

that takes in samples of air in a small chamber and his hit 

with a beam of light that gets scattered and read by a 

photodiode. The Particulate Matter sensor used on our 

vehicle will tell the microcontroller how many particles of 

varying sizes are in the air sample. The PMSA003I is 

capable of distinguishing are 3, 5, 10, 25, 50, and 100 

micrometers (um). This sensor needs 5V to operate. 

C. VEML 7700 Light Sensor 

The VEML 7700 is the Light Sensor that is equipped on 

the vehicle. The sensor can take a maximum supply 

voltage of 4V but thanks to the 3.3V voltage regulator on 

the breakout board, it allows us to plug it in to our 5V 

power supply without concern of burning out. 

 

 

 

 

 

 

 

 

 

 

The angle at which light his hits the sensor affects the 

output value8. This sensor can measure up to 120 kLux. 

D. VEML 6070 UV Light Sensor 

   Our vehicle is also equipped with a VEML 6070 UV 

Light sensor. This device takes in 5V and communicates 

via I2C. Contrary to other low-cost UV light sensors on the 

market, the VEML 7700 can detect light in the UV 

spectrum. It doesn’t output a UV index value, instead it 

outputs a value depending on how intense the UV light is. 

The maximum value that can be outputted is 65535. 

E. AM2320 Temperature and Humidity Sensor 

   The AM2320 will monitor the temperature as well as the 

relative humidity around the vehicle. Takes in 5V to 

operate and also uses I 2C for communication. It has a 

range of -40 °C up to +80 °C for the temperature sensing 

and has range of 0% RH to 99% RH. 

F. SEN0322 Oxygen Sensor 

   The O2 sensor equipped on the vehicle is the SEN0322. 

It takes in 5V and communicates with I2C. The amount of 

oxygen in the air we breath is around 21%, 78% belongs 

to nitrogen with the remaining percent going to argon and 

other gases. The SEN0322 can measure the amount of 

oxygen in the air up to 30%. This allows us to ensure that 

the environment is safe enough to breath. Unsafe oxygen 

percentage is below 19%. 

G. SGP40 VOC Sensor 

   The Volatile Organic Compound Sensor equipped on our 

vehicle is the SGP40. This sensor takes in a maximum of 

3.6V but has a voltage regulator on the breakout board that 

allows for a 5V supply voltage to the device. This device 

allows us to determine the VOC index of the area. VOC 

index’s range from 0 to 500, with 100 being the average 

index indoors. 

H. DFR0231-H NFC Sensor 

   Our vehicle will have the DFR0231-H NFC sensor to 

simulate unlocking and locking. This sensor requires 5V to 

operate and has both I2C as well UART. The 

communication protocol can be interchanged with a flip of 

the switch. It supports the Reader/Writer protocol, the Card 

Emulator protocol, as well as the Peer-to-Peer protocol. 

I. Microcontroller Programming 

   To program the ATMEGA328P, we used the Arduino 

IDE. In the program is a custom data structure that will hold 

all of the information so that it can be sent via I2C to the 

Raspberry Pi. The data structure is a total of 31 bytes so the 

ATMEGA328P will not have to send multiple packages 

since the Node Red flow that will be running on the 

Raspberry Pi has a maximum data package of 32 bytes. 

   The NFC sensor will determine if the touchscreen UI will 

be locked or not. As the user taps the NFC with a supported 

NFC tag, it will invert a Boolean value.  

   When the Raspberry Pi sends a request for data, the 

microcontroller will jump to Interrupt Service Routine that 

sends each byte from the custom data object to the Pi. 

V. NAVIGATION 

The autonomous navigation is controlled by a NVIDIA 

Jetson Nano running the robot operating system (ROS). To 

successfully navigate, The Jetson Nano is using multiple 

packages in ROS, which includes the navigation package1 

for localization and navigation, the robot_localization2 

package for sensor fusing and localization, the 

freenect_stack3 package for depth information from the 

Figure 3: Radiant Sensitivity vs. Angular Displacement 



Microsoft Kinect, the nmea_navsat_driver package for 

GPS data, the adafruit_imu package for gyroscopic and 

linear acceleration data, an encoder package for velocity 

data and localization, and a motor controller package for 

navigation. The Jetson Nano communicates with a 

gyroscopic sensor, and an accelerometer over I2C, a GPS 

over UART, and an Arduino Mega and Microsoft Kinect 

over USB. 

A. Motors  

The motors used on the vehicle are RS390 motors. These 

motors are powered by a 12V battery and are controlled by 

the Arduino Mega. The Arduino Mega is used as a motor 

controller since the Jetson Nano is unable to have a digital 

low signal sent to the pins, which causes floating voltage 

levels throughout the enabled pins. This in turn produces 

unpredictable behavior in the motors causing them to 

randomly turn on when the pins receive voltage even when 

the pin should be in a low state. The motors also have two 

BTS7960 motor drivers controlling the voltage applied to 

the motors for control. These motor drivers are placed 

between the battery and motors since the Arduino Mega is 

incapable of providing the necessary voltage to power the 

motors, and the Arduino Mega controls the voltage going 

through the motor drivers via digital pins. 

B. Odometry 

The odometry is calculated via encoder ticks from a 

Quadrature encoder attached to the shaft of the motors. 

These encoders calculate the velocity of the vehicle by 

using the following formula:  

 𝑉 =
2∗𝜋∗𝑟∗∆𝑡𝑖𝑐𝑘

∆𝑡
 (X) 

where r is the radius of the wheel, ∆tick is the difference 

in encoder ticks from the current and previous counts, and 

∆t is the difference in time measured in milliseconds. This 

approach is not accurate over a long distance due to wheel 

slippage and false tick counts; however, it is aided by the 

accelerometer sensor and the GPS, which are both fused 

with this approach for velocity measurements. Since the 

engineering requirements specify a position error by a 

maximum of two meters, the use of estimated velocity will 

not cause any issue when fused with the GPS, which has a 

maximum position error of two meters.  

C. Object Detection 

The vehicle uses a Microsoft Kinect for depth data using 

an infrared camera that uses a point cloud to estimate 

distance. The resolution of the IR camera is 640 × 480 

pixels and can support a resolution of 1280 × 1024 at a 

lower frame rate. The IR camera also has a practical range 

of 1.2 – 3.5 meters and has a maximum range of 6 meters. 

The field of view of the IR camera is 57° horizontally and 

43° vertically. Due to the large size of the depth data, which 

would often be over 10MB in size, the depth information is 

only updated at a rate of 3 Hz to avoid overtaxing the Jetson 

Nano’s processor. During testing this would lead to a total 

system failure, due to the Jetson Nano being unable to 

process over 300MB of data per second from the Kinect 

alone. The depth information is processed by the navigation 

package to populate an occupancy grid via the costmap_2d 

package within the navigation package. This package will 

keep track of any potential obstacles of any size and will 

allow the vehicle to properly plan its route accordingly. The 

vehicle does not have any kind of mapping since it’s 

designed for outdoor use in an unfamiliar environment, so 

having an accurate occupancy grid is a key part of the 

vehicle successfully navigating.  

D. Navigation  

The vehicle navigates with the navigation package. This 

package provides the necessary behaviors for successfully 

navigating with or without a map and relies on the user to 

provide information about the robot. The first thing it 

requires is a consistently updated sensor transformation 

message. This allows for calculating the position of sensors 

in relation to the base link, or the center of the robot. The 

next thing it requires is an odometry source. This is 

provided by the encoders on the wheels as discussed in 

subsection B. A type of vision is also required for 

successful navigation. This is provided by the Microsoft 

Kinect as discussed in subsection C. The final requirement 

is a base controller that the navigation stack can send 

movement commands to in the form of X, Y, and Yaw 

commands and receives velocity information VX, VY, and 

VYaw. Since our vehicle is using a differential drive, it only 

takes X, and Yaw commands and sends VX and VYaw 

information. A map is an optional part of the navigation 

package that we are not providing since the vehicle is 

designed to navigate through unfamiliar areas. The 

behaviors the navigation package provides are a global 

planner, a local planner, a global costmap, a local costmap, 

a common costmap and recovery behaviors. The costmaps 

are how the navigation package stores information about 

potential obstacles and required information about the robot 

such as: dimensions, observation sources (LiDAR or 

Kinect), observation range, global frame (non-moving 

sources such as odometry origin and maps), base link, 

update frequency, and whether a map is used. The global 

and local planner behaviors require information about the 



maximum velocity and acceleration limits of the robot, as 

well as if the robot is holonomic or differential.  

VI. ELECTRICAL 

The electrical system of the vehicle is separated into two 

power sources with a common ground between. This 

configuration was chosen to prevent a sharp voltage drop 

when the motors are activated, as well as allowing the hot-

swap functionality of the main chassis battery without 

requiring a reboot of the microcontroller and data collection 

devices.  

An additional power source to aid in extending the 

runtime was a solar panel attached to the hood. Rated at 

100W, the panel had an actual output of 15W, so 

compensation was needed after initial testing. The panel has 

an integrated charge controller that connects to the chassis 

battery. At 1.25A of output current, this will provide 

enough power trickle charge the chassis battery, or supply 

power to offset a majority of load with no passenger weight 

in the vehicle. 

A thermal cutoff fuse is mounted in-line with each motor 

to shield the vehicle and passengers from overload if the 

wheel gets stuck and the controller fails to cut power. The 

average current draw from the battery is under 4A but will 

peak over 10A when an excess load of 3x rated capacity is 

tested. Even with the large load being tested, there was no 

thermal fuse triggering nor wires generating concerning 

amounts of heat. 

A 12V-4.5Ah Sealed-Lead-Acid (SLA) battery was 

selected and total runtime was not an issue even after 

receiving a partially defective panel. Even with the solar 

panel, charging can still be done using the built-in power 

wheels battery controller at 0.5A, or an external 12V 

charger up to 10A. This aligns with our initial specification 

as golf carts are charged via the method of an external 

charger. 

The sensors and circuit board are powered by a 12V 

Lithium-Ion battery comprised of 3-18650 cells. A 2Ah 

Milwaukee M12 battery was the easiest source of power 

during testing and demonstration. Located on the exterior 

edge of the board are two screw connector terminals that 

are used mutually exclusive for powering the board. A 5V 

terminal is connected to the main trace of the circuit board 

as a backup option if the on-board converter fails at any 

point.  

To connect directly from a 12V source, a 5V step down 

regulator (Pololu D24V50F5) allows us to power the 

sensors with a maximum sustained current of 5A. The 

module features reverse polarity protection to sanitize the 

cruder screw terminal inputs. This was beneficial over a 

barrel jack during testing and allows the 5V input to be dual 

purposed as an output port if needed. To further increase 

the safety of powering our devices, a waterproof inline fuse 

was added to the input of the board. 

Powering a Kinect and transmitting data is done via a 

proprietary cable from Microsoft that is connected to a 

110V AC power source. To combat the issue of ruining an 

expensive cable, allow modularity during prototyping, and 

providing adequate wattage, an Uninterruptable-Power-

Supply (UPS) was chosen to be mounted on the vehicle. It 

will be charged via an extension cord while the vehicle is 

stopped. It has a reserve capacity of 200W, which is enough 

for 6 hours of runtime. Rather than be configured in the 

method it is meant for, the device will be used as a portable 

110V source. The Kinect, our machine vision components, 

Raspberry Pi, and screen will be powered by this source. 

Rather than design our own solution, we found the safest 

and most compact option to be purchasing a device with a 

full sin wave inverter.  

VII. CONCLUSION 

This project has given our team experiences and insight 

to multiple different areas of engineering due to the 

complexity of making an autonomous vehicle. We have 

adapted to failures and learned from mistakes. Choosing 

this project was a difficult decision and a big leap out of 

what we were comfortable with. We chose to create a 

project that had aspects of the fields all our team members 

wanted to get a career in: Electrical Systems, Software 

Development, Robotics, and Embedded Systems. Given the 

time frame of the project we wanted to push the boundaries 

of what we thought we could do, while also trying to 

succeed in making a functioning project. 

Figure 4: PCB Layout 
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